Фосфорорганические соединения (ФОС)

Фосфоорганические соединения (или ФОС) – инсектициды и фунгициды, производные пятивалентного фосфора, имеющие сходные механизмы действия на насекомых.


До появления синтетических пиретроидов фосфорорганические соединения были наиболее широко применяемыми и разнообразными по ассортименту пестицидами. Они вытеснили стойкие и опасные для окружающей среды хлорорганические соединения.

Важнейшими их преимуществами и свойствами являются:

  • высокая инсектицидная и акарицидная активность и широкий спектр действия на вредных членистоногих (за исключением Диазинона);
  • широкий диапазон персистентности соединений, разложение которых происходит в большинстве случаев с образованием практически нетоксичных для человека и животных соединений;
  • относительно быстрое протекание метаболизма в организме позвоночных и отсутствие способности накапливаться в их тканях, а также сравнительно небольшая хроническая токсичность или полное ее отсутствие;
  • быстрое разложение в почве (кроме хлорпирифоса – вещество может сохраняться в почве до двух лет);
  • системное и глубинное действие ряда инсектицидных препаратов;
  • малый расход препарата и быстрота действия на вредителей растений и паразитов животных;
  • умеренная токсичность для рыб;
  • наличием препаратов системного действия;

Недостатком фосфорорганических соединений как пестицидов является появление резистентных популяций и высокая острая токсичность для млекопитающих, что требует соблюдения соответствующих мер предосторожности при их использовании.[14][16]

Фосфорорганические соединения (ФОС) - Газ Зарин
Газ Зарин


История

История обнаружения токсических свойств фосфорорганических соединений (ФОС) восходит к началу ХХ века.

Вначале они обратили на себя внимание как боевые отравляющие вещества (в 1938 году в Германии был синтезирован газ зарин). В конце Второй мировой войны были сделаны промышленные установки по синтезу первых пестицидов.

В сельскохозяйственное производство они были введены с 1965 года взамен персистентныx и низкоэкологичных ДДТ, гексахлорана и других хлорорганических соединений. ФОС оказались просты в синтезе и высокоэффективны против насекомых.

В 1970-е годы половина из 20 наиболее распространенных в мире инсектицидов принадлежала фосфорорганическим соединениям, а 1/5 – метилкарбаматам.

ФОС не утратили своих преимуществ и до настоящего времени.[15]

Инсектициды и акарициды

Фосфорорганические соединения (ФОС) - Механизм действия
Механизм действия


Действие на вредные организмы

Фосфороргaнические соединения – яды нервно-паралитического действия, вызывающие паралич, в том числе и с летальным исходом.

Большинство фосфорорганических пестицидов не ионизируется и проявляет значительные липофильные свойства, поэтому поступившее при вдыхании или проглатывании вещество будет легко всасываться.[4]

Механизм действия

заключается в следующем: действующие вещества, при попадании в организм, фосфорилируют белковый фермент ацетилхолинэстеразу (АХЭ). Она содержится в нервных тканях и играет важную роль в передаче нервного импульса. Данный фермент относится к группе гидролаз эфиров карбоновых кислот. АХЭ в основном локализуется у рецепторов на постсинаптической мембране синапса и частично в мембране отростка нейрона (аксона).

Фосфорорганические соединения, взаимодействуя с эстеразами, по типу конкурентного торможения подавляют их активность. Нервная клeтка, или нейрон, является основным структурным элементом нервной системы животных. Нейроны передают информацию в виде импульсов (нервных сигналов).

Нейрон состоит из:

  • дендритов (многочисленных отростков), связанных с другими нервными клетками и собирающих информацию;
  • аксона – единственного длинного отростка, оканчивающегося утолщением – синоптической бляшкой, и передающего информацию.

Мембрана одного нейрона, которая контактирует с другой клеткой (мышечной клеткой или нейроном), образует между возбудимыми клетками синапс функциональный контакт. В нем различают пресинаптическую часть – окончание аксона первой клетки, синаптическую щель – межклеточное пространство, разделяющее мембраны контактирующих клеток, и постсинаптическую часть – участок второй клетки.

У членистоногих информация передается в виде электрического сигнала (тока) по мембране клетки. Синаптическая щель заполнена гелеобразным веществом, имеющего большую электрическую емкость, и сигнал не может пройти сквозь нее. Передачу электрического сигнала (возбуждения) через щель осуществляют медиаторы – химические вещества норадреналин и ацетилхолин.

У человека и теплокровных животных имеется пять медиаторов (в том числе и адреналин), у насекомых около 100. Когда медиаторы неактивны, они находятся в везикулах (синаптических пузырьках), изолирующих их от клеточного содержимого. По достижении нервным импульсом пресинаптической части, деполяризуется мембрана клеточного окончания, что увеличивает ее проницаемость ионами кальция. Последние, входя в пресинаптическую часть, вызывают освобождение медиатора – везикула лопается, и ацетилхолин, который обладает большой реакционной способностью, попадает в межклеточное пространство и затем в постсинаптическое пространство другой клетки, вызывая тем самым генерацию электрического потенциала.

Роль фермента ацетилхолинэстеразы заключается в том, что он, гидролизуя ацетилхолин, уменьшает возбуждение. Весь процесс проходит за считанные доли секунды (миллисекунды). Если ацетилхоинэстеразы нет или она блокируется пестицидом, то в синаптической щели накапливается свободный ацетилхолин, вследствие чего нарушается нормальное прохождение нервных импульсов. Возникает тремор (судорожная активность мышц), переходящий в паралич.

Фосфорорганические препараты сильнее действуют на постэмбриональные стадии развития насекомых и клещей (личинки, нимфы, взрослые особи) и слабее – на яйца.[15]

Резистентность

При систематическом применении препаратов на основе фосфорорганических соединений для защиты от клещей и насекомых, дающих много поколений за сезон, вредители быстро приобретают групповую устойчивость. В практике защиты растений нужно не допускать развития резистентности, для чего применяют инсектициды и акарициды с различным механизмом действия.[16]

Применение

Фитотоксичность

препаратов, применяемых в форме концентратов эмульсий, может проявляться в повреждении (ожогах) листьев и особенно цветков и бутонов.[16]

При рекомендованных нормах препараты нефитотоксичны.[15]

В сельском хозяйстве

препараты на основе фосфорорганических соединений широко применяют в сельском хозяйстве. С названиями препаратов, способом обработки, перечислением защищаемых культур и вредителей можно ознакомиться в закладке "Регламенты применения", существующей для каждого инсектицида.

Наиболее ограничено применение высокотоксичных фосфорорганических соединений с выраженными кумулятивными свойствами, таких как Фенитротион и Фозалон. Они рекомендованы преимущественно для защиты зерновых, технических, плодовых и цитрусовых культур.

Из овощных культур ими можно обрабатывать только возделываемые на семена.

Ягодники разрешено обрабатывать до цветения или после сбора урожая.[10]

Большое достоинство фосфорорганических соединений – наличие среди них веществ, обладающих системным действием (Диметоат и Диазинон).

Эти свойства веществ являются очень важными, так как в современном ассортименте пестицидов отсутствуют другие инсектициды, обладающие таким действием.[10][16]

В ЛПХ

. В личном приусадебном хозяйстве используются препараты на основе Диазинона, Малатиона и Пиримифос-метила.[6]

Токсическое действие

По критерию пероральной токсичности Паратион-метил, Диазинон, Хлорпирифос и Фозалон относятся к высокотоксичным веществам; Пирифос-метил – к малотоксичным, все остальные – Фенитротион, Малатион, Диметоат – к среднетоксичным.

Обычно в организме теплокровных ФОС быстро разлагаются до нетоксичных водорастворимых веществ и выводятся из организма с мочой. Для самого стойкого вещества из производных ФОС – Хлорпирифоса – характерна опасность накопления в организме и выделения с грудным молоком.

В водной среде фосфорорганические инсектициды весьма нестабильны. Тем не менее при случайном попадании этих соединений в реки и озера с обработанных площадей их токсическое действие на водные организмы может проявиться еще до полного распада. В чистой воде в лабораторных условиях токсические эффекты проявлялись на различных видах водных организмов, подвергавшихся воздействию фосфорорганических инсектицидов в диапазоне концентраций от 0,01 до 1 мг/л в течение 48 ч. Однако летальные концетрации, рассчитанные для 48-часового воздействия в чистой лабораторной воде, могут быть искусственно заниженными по сравнению с реально встречающимся концентрациями в природных водоемах.[4]

Фосфорорганические соединения (ФОС) - Фосэтил алюминия
Фосэтил алюминия


Фунгициды

Действие на вредные организмы

Фосэтил алюминия эффективен против фикомицетов и пероноспоровых грибов, но является малоэффективным против фитофтороза томата и картофеля.[8] Вещество ускоряет процесс образования растением токсичных для грибов веществ – фенольных соединений. Они, накапливаясь, преграждают путь к клеткам растения и препятствуют проникновению гриба в ткани.[11] Фунгицид избирателен в отношении оомицетов, воздействует на фитопатогены и других классов. Рост мицелия в питательных средах подавляет слабо. Считается, что на фитопатоген влияет через растение, усиливая его защитные реакции: зараженные растения в отличие от неинфицированных выделяют фитоалексиноподобные вещества и антигрибные фенольные соединения. Также предполагается, что в молекуле фунгицида есть токсофорфосфит, также способствующий выработке динамичных защитных реакций.[5]

Применение

Препараты на основе фосэтил алюминия применяются против болезней винограда.[7]

Резистентность

Механизм действия фосэтила исключает появление резистентности, что подтверждено итогами результатами десятилетних испытаний продукта.[11]

Токсическое действие

Препараты на основе фосэтил алюминия запрещено применять в санитарной зоне вокруг рыбохозяйственных водоемов.[5] Фунгицид не опасен для пчел и естественной фауны.[8][3] Для теплокровных животных и человека малотоксичен.[8]

Симптомы отравления

В клинической картине острого отравления фосфорорганическими соединениями различают стадию начальных симптомов, судорожную и паралитическую. На первой стадии возможны тошнота, слюно- и слезотечение, боли в животе, рвота, нарушение зрения, понос, беспокойство, головокружение. Более сильное воздействие яда обуславливает головную боль, сонливость или бессонницу, изменение чувствительности, нарушение походки, тремор головы, рук и иных частей тела.[12]

Симптомы интоксикации могут развиваться сразу или спустя несколько часов после воздействия. Симптоматика может нарастать на протяжении суток или более и сохраняться несколько дней.[4]

Если интоксикация выражена слабо или соединение легко выводится из организма, выраженность симптомов может уменьшаться довольно быстро, хотя для нормализации уровней угнетенной ХЭ крови может потребоваться несколько недель. После острой интоксикации, вероятно, сохраняются некоторые хронические эффекты, а слабость и утомляемость могут отмечаться в течение долгого времени.[4]

При воздействии на организм различных фосфорорганических соединений картина отравления в целом является сходной. Она обусловлена накопление ацетилхолина (АХ) в нервных окончаниях. Многое зависит от пути поступления яда в организм. При попадании вещества на кожу первоначальным симптомом может быть развитие в этом месте мышечных фибрилляций. При ингаляционном отравлении сначала возникает затруднение дыхания, миоз, вслед за которыми поражается центральная и вегетативная нервные системы. При поступлении через желудок обычно возникают рвота, спазмы кишечника, а позднее другие симптомы резорбтивного действия веществ.[12][20]

У некоторых соединений (Паратион-метила, Фенитротиона, Фозалона) выражена кожно-резорбтивная токсичность. Поэтому при работе с ними необходимо строго соблюдать меры безопасности и применять надежные средства защиты органов дыхания и наружных покровов тела.[16]

Гербициды

Из фосфорорганических соединений глифосат является гербицидом широкого спектра активности и арборицидом. Данное соединение обладает избирательным и сплошным действием, используется для борьбы с однолетними и многолетними сорняками.

Механизм действия

. Глифосат имеет контактное и частично системное действие. В подземные органы растения перемещается из надземных, всасываясь через листья. Предполагается, что соединение подавляет биосинтез фенилаланина.[9]

Предотвращение этого синтеза приводит к гибели растений. Осадками остатки препарата могут быть смыты с растений в почву. Из почвы корни растений глифосат не всасывают.[2]

Подавляемые сорные виды. Глифосат уничтожает многолетние корневищные сорняки, сорняки оросительных систем – сыть круглую, тростник, рогоз и пр.[8] А также гумай, пырей ползучий, свинорой, вьюнок, лютик ползучий, мышей сизый, бодяк, осот, молокан татарский, одуванчик, лютик едкий, щетинник, пикульник, якорцы, молочай, ромашку и пр.,[1][15] острец.[8]

Применение

Глифосат рекомендуется для использования в лесных питомниках в качестве арборицида для ухода за культурами, молодняками и жердняками естественного происхождения путем инъекций в стволы нежелательных деревьев, опрыскивания крон или путем опрыскивания растений в облиственном состоянии.[17]

В сельском хозяйстве гербицид лучше всего применять по стерне или в парах для обработки сорной растительности в период вегетации. На семена воздействия не имеет. Разрешен к применению в личных подсобных хозяйствах.[7][19]

Токсическое действие

Глифосат малотоксичен для пчел и других полезных насекомых,[13] для теплокровных. Кожу не раздражает, кумулятивные свойства слабые.[17]

Симптомы отравления. При остром отравлении раздражаются глаза и кожа, появляются тошнота, головная боль.[18]

Классы опасности

. Препараты на основе фосфорорганических соединений относят ко 2 и 3 классам опасности для человека и 1 и 2 для пчел.[6]

 

Оставьте свой отзыв:

Отзывы:

Комментарии для сайта Cackle

Составители:

 

Страница внесена:

Последнее обновление: 21.05.18 15:46

Статья составлена с использованием следующих материалов:

Литературные источники:
1.

Безуглов В.Г. Применение гербицидов в интенсивном земледедлии. М.: Росагропромиздат, 1988. – 205 с.;

2.

Воронина В.М, к.б.н.,Светлый С.С. и др. Токсиколого-гигиеническая характеристика нового отечественного гербицида Отаман. Токсикологiя пестицидiв. УДК 613.6+616.631.8

3.

Ганиев М.М., Недорезков В.Д. Химические средства защиты растений. – М.: КолосС, 2006. – 248 с.

4.

Гигиенические критерии состояния окружающей среды №64. Карбаматные пестициды: общее введение. Всемирная организация здравоохранения, Женева, 1991. – 128 с.

5.
Голышин Н. М. Фунгициды. - М.: Колос, 1993. -319 с.: ил.
6.
Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации, 2012 год. Министерство сельского хозяйства Российской Федерации (Минсельхоз России)
7.

Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации, 2013 год. Министерство сельского хозяйства Российской Федерации (Минсельхоз России)

8.
Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева - 3-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 415 с.: ил.
9.

Захаренко В.А. Гербициды. – М: Агропромиздат, 1990. – 240с.

10.
Зинченко В.А. Химическая защита растений: средства, технология и экологическая безопасность. – М.: Колос С, 2005. – 232 с.
11.
Каспаров В.А., Промоненков В.К. Применение пестицидов за рубежом. – М.: Агропромиздат, 1990. – 224 с.
12.

Лазарев Н.В. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Том III. Неорганические и элементоорганические соединения. Под ред. проф. Н.В.Лазарева и И.Д.Гадаскиной. Л.: «Химия», 1977.608 с.

13.

Мартыненко В.И.; Промоненков В.К.; Кукаленко С.С.; ВолодковичС.Д.; Каспаров В.А. Пестициды: Справочник. -М. : Агропромиздат, 1992 -368с.

14.
Мельников Н.Н. Пестициды. Химия, технология и применение. - М.: Химия, 1987. 712 с.
15.
Попов С.Я. Основы химической защиты растений. Попов С.Я., Дорожкина Л.А., Калинин В.А./ Под ред. профессора С.Я Попова. - М.: Арт-Лион, 2003. - 208 с.
16.
Попова Л.М. Химические средства защиты растений. Учебное пособие. СПбГТУРП. – СПб., 2009. – 96 с.
17.

Применение гербицидов и арборицидов в лесовыращивании. Справочник / Шутов И.В., Бельков В.П. и др. М.: Агропромиздат, 1989. – 223 с.

18.

Ракитский В.Н. Справочник по пестицидам (токсиколого-гигиеническая характеристика). Выпуск 1. Под редакцией академика РАМН В.Н. Ракитского. – М.: Издательство Агрорус, 2011. – 960 с.

19.

Справочник по пестицидам / Н.Н. Мельников, К.В. Новожилов, С.Р. Белан, Т.Н. Пылова. М.: Химия, 1980. – 352 с

20.
Шрадер Г. Новые фосфорорганические инсектициды/Перевод с немецкого А. Г. Зенькевич, канд. хим. наук Я. А. Мандельваума, канд. хим. наук К. Д. Швецовой-Шиловской, Под редакцией доктора хим. маук, проф. Н. Н. Мельникова – М.: МИР, 1965.
Изображения (переработаны):
21.

Буклет препарата «Калипсо». BayerCropScience, 2011 год.

22.

CMA reaches 45% destruction milestone, by  U.S. Army Materiel Command's , по лицензии CC BY

Свернуть Список всех источников