Медь

По-английски

Copper

Раздел на сайте

Минеральные удобрения

Группа

Микроэлементы, Питательные элементы


Медь – химический элемент, очень важный для питания растений. Известен с древнейших времен, распространенность в природе сравнительно невелика. Применяется в качестве компонента или действующего вещества микроудобрений для обработки семян, некорневой подкормки и внесения в почву.

Медь
Показать все

Содержание:


Медь известна человечеству очень давно. Когда-то из нее даже делали оружие, правда, из-за того, что этот металл очень мягкий, в военном деле он перестал применяться еще в третьем тысячелетии до нашей эры. Сложно сказать, сколько именно названий сменила медь за то огромное количество лет, на протяжении которых ее использует человек, однако последнее имя – Сuprum– было дано ей в честь острова Кипр, где в III в. до н.э. велись интенсивные разработки медных рудников.

Несмотря на то, что на Кипре уже очень давно не ведется добыча этого металла, остров до сих пор известен в качестве месторождения меди. Дело в том, что такие рудники – явление достаточно редкое. Хотя в природе и встречаются медные самородки (самый крупный из добытых весил 420 тонн), основную часть металла добывают из руд и минералов. Кстати, раньше ее получали преимущественно из малахита – того самого, который ныне используется в изготовлении украшений и других декоративных вещиц. Он представляет собой основной карбонат меди, который образуется в карбонатных породах, а также может формироваться на воздухе в присутствии воды и углекислого газа. Пример последнего мы можем наблюдать воочию: оказывается, зеленые крыши домов старой Праги покрыты не яркой краской, а медными листами, на поверхности которых под действием времени образовалась тонкая пленка малахита…

Каждый год по всему миру выплавляется порядка 10 миллионов тонн меди, которая самостоятельно или в составе сплавов используется с самыми разными целями, от изготовления мельхиоровых ложек до производства антисептиков. Медь нужна практически в любой сфере производства, а также в здравоохранении и сельском хозяйстве.[9]

Медь - Медная руда
Медная руда


Физические и химические свойства

Медь (Cuprum) Cu – химический элемент I группы побочной подгруппы периодической системы Менделеева. Атомный номер – 29. Атомная масса – 63,54. Природная медь состоит из смеси двух стабильных изотопов с массовым числом 63 (69,1 %) и 65 (30,9 %)

Медь – металл красного, в изломе розового цвета. При просвечивании в тонких слоях заметен зеленовато-голубой оттенок. Температура плавления – 1083°C, температура кипения – 2600°C.

В химическом отношении медь является промежуточным элементом между элементами первой плеяды VIII и щелочными металлами I группы химической системы Менделеева. Так же, как железо, кобальт и никель, она склонна к комплексообразованию, образует окрашенные соединения, нерастворимые сульфиды и др. Сходство по химическим свойствам с элементами главной подгруппы первой группы незначительно.

В химических соединениях медь обычно присутствует в двухвалентном состоянии, но известны вещества, в которых медь трехвалентна.[5]

Содержание меди в почве и стран СНГ. Общее количество и подвижные формы (для некоторых типов), (мг/кг), согласно данным:[4]

Почвы

Общее среднее содержание меди

(подвижные формы)

Пределы колебаний общего среднего содержания меди

Почвы тундры

9

2 - 23

Дерново– подзолистые

15

(1 - 5,4)

0,1 – 47,9

Серые лесные

15

(6,6 - 7,8)

5 – 39

Черноземы

30

(4,1 - 6,5)

7 – 18

Каштановые

10

0,6 – 20

Сероземы

11

5 - 20

Засоленные

27

4 - 42

Красноземы и желтоземы

76

(7,4)

27 - 140

Болотные

11

2 - 37

Торфяник верховой

3

1 - 5

Дерново-карбонатные Прибалтики

5

1,2 – 18,5

Содержание в природе

В земной коре содержится 0,01 % меди. Распространение в природе сравнительно низкое. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров. Но руды самородной меди распространены сравнительно мало – их не более 5 % от общей добычи в мире.

Медь – один из элементов, образующих халькосферу, которая располагается между литосферой и земным ядром. В связи с выдавливанием халькофилов в литосферу вследствие магматических и гидротермальных процессов подавляющая часть меди (около 80 %) присутствует в земной коре в соединениях с серой, 15 % меди – в виде кислородных соединений: окислов, карбонатов, силикатов и прочих. Данные соединения являются продуктами выветривания первичных сульфидных медных руд.

Медь образует до 240 различных минералов, но только около 40 из них имеют промышленное значение.

Важнейшие для промышленности минералы – халькопирит (медный колчедан), халькозин (медный блеск), ковеллин, борнит, малахит, азурит, хризаколла, брошантит. Обычны арсениды, антимониды и сульфоарсениды меди.[5]

Повышенное содержание меди свойственно средним и основным горным породам, а пониженное – карбонатным. Наибольшее распространение имеют простые и сложные сульфиды (первичные минералы). Они довольно легко растворяются при выветривании и высвобождают ионы меди. Кроме того, катионы меди обладают разнообразными свойствами и склонны к химическому взаимодействию с органическими и минеральными веществами. Они легко осаждаются различными анионами: сульфидом, карбонатом, гидроксидом. По этой причине медь в почвах относительно малоподвижна, и ее суммарное содержание в почвенных профилях варьирует незначительно.[3]

Начальным состоянием распределения меди в почвах управляют два фактора: процессы почвообразования и материнская порода. Обычной чертой распределения меди в почвенном профиле является ее аккумуляция в верхних слоях. Это отражает ее биоаккумуляцию и влияние антропогенных факторов.[3]

В почве различают

следующие формы меди: обменные (поглощенные органическими и минеральными коллоидами), водорастворимые, труднорастворимые медные соли, медьсодержащие минералы, комплексные органические соединения. Подвижность меди и доступность растениям зависит от комплексообразования и адсорбции. Ионы меди способны адсорбировать практически все минералы почвы. Адсорбция зависит от заряда поверхности адсорбента, контролируемого величиной кислотности среды. Растворимость катионных и анионных форм меди понижается при pH 7–8.

Ключевая реакция содержания меди в почве – комплексообразование с органическими соединениями. Гуминовые вещества образуют с медью растворимые и нерастворимые соединения.

Наиболее доступны для растений обменносорбированные и водорастворимые соединения меди.[2]

Содержание меди в различных типах почв

Содержание меди в почвах стран СНГ колеблется в достаточно широких пределах – от 1 до 100 мг/кг и выше.

Потребность с/х культур в меди и симптомы недостатка, согласно данным:[10][8]

Культура

П

Симптомы недостатка

Общие симптомы

 

Потеря тургора листьев, хлороз;

Тормозится рост, нарушается образование репродуктивных и запасающих органов, происходит закручивание листьев

Зерновые

Общие симптомы

 

Рост заторможен, растения светло-зеленые, верхние листья сухие, скрученные;

Колосья и метелки недоразвиты;

Цветки стерильные, кончики листьев белеют

Озимая пшеница

В

 

Озимая рожь

-

 

Яровая пшеница

В

 

Яровая рожь

С

 

Ячмень

В

 

Овес

В

 

Зернобобовые

Горох

Н

 

Бобы

С

 

Масличные

Озимый рапс

-

 

Яровой рапс

-

 

Лен

В

Укороченные междоузлия, розеточность листьев, склонность к  полеганию

подсолнечник

В

Соцветие мелкое, искривленное, листья верхнего яруса бледные

Овощные

Капуста цветная

С

 

Огурец

С

Становится карликовым, ткани теряют тургор, растения вянут;

Белеют кончики молодых листьев;

Опадают завязи и цветки;

Задерживается стеблевание;

Слабо образуются семена

Морковь

В

Верхние 3-5 листьев становятся мелкими, сине-зеленого цвета;

Хлороз отсутствует;

Цветки недоразвиты;

Завязи осыпаются;

Побеги слабые;

Развитие корней слабое

Редис

С

 

Редька

С

 

Томат

С

 

Капуста белокочанная

С

 

Лук

В

Угнетается рост и развитие;

Плотность чешуй понижается;

Цвет бледно-желтый

Салат

В

Листья уродливой формы, беловатой окраски, слабо растут

Пропашные

Картофель

-

 

Свекла сахарная, кормовая, столовая

С

 

Кормовые

Клевер луговой

С

 

Люцерна

В

 

Кукуруза на силос и зеленую массу

С

 

Плодовые

Общие симптомы

 

На верхних листьях побегов – хлороз тканей между жилками. 

Лист беловатый. С усилением  - побеги растут сплющенными, темно-зелеными с маленькими листьями, листья опадают 

Образуется суховершинность, цветение и завязывание плодов прекращается, плоды мельчают, качество их ухудшается

Слива

В

Молодые листья желтеют, ранний листопад, кора растрескивается, натеки камеди, слабое плодоношение

Яблоня

В

Кончики побегов увядают, ведьмины метлы, опадают верхние листья

Цитрусовые

Общие симптомы

В

Плодоношение отсутствует

Очень высоко содержание меди в почвах, образовавшихся на богатых медью породах и в районах концентрации медных месторождений. Значительное обогащение почв медью отмечается при частой обработке растений инсектофунгицидами с содержанием меди.[4]

Содержание данного элемента в почве непосредственно связано с его содержанием в почвообразующих породах:

Базальты

– содержат больше всего меди.

Андезиты

– несколько меньше, чем базальты.

Граниты

– низкое содержание меди.

Валунные суглинки, известняки и пески

– особенно бедны медью

Глины и лессы

– самые богатые медью среди осадочных пород.[4]

Общее содержание меди различается в зависимости от типа почв:

Желтоземы и красноземы

– наиболее богатые медью.

Засоленные почвы и черноземы

так же богаты медью, но здесь ее меньше, чем в красноземах.

Дерново-подзолистые, серые лесные, сероземы и каштановые

почвы – содержат более низкие концентрации данного металла.

Верховые торфяники и дерново-карбонатные

типы почв прибалтийских районов – самые бедные по общему содержанию меди.

Почвы тундры

– так же бедны медью, как и предыдущие типы почв.[4]

Торфянисто-болотные

и некоторые минеральные почвы песчаного и супесчаного механического состава содержат количество меди, не способное обеспечить нормальный уровень питания растений данным элементом. При этом надо отметить, что торфянисто-болотные почвы значительно различаются по содержанию меди.[4]

Подвижная медь

. Для сельского хозяйства важно не только общее содержание меди в почве, но и форма нахождения и степень доступности растениям. Формы меди подразделяются на четыре группы:

  • медь в кристаллической решетке первичных и вторичных минералов;
  • медь в соединениях с органическим веществом почвы;
  • медь в поглощенном состоянии на поверхности коллоидных частиц почвы;
  • водорастворимые формы меди.

Содержание водорастворимых соединений обычно мало и составляет менее 1 % от общего ее количества. При этом, они представлены как минеральными, так и органическими кислотами. Водорастворимые соединения меди подвержены вымыванию из почв. Это значимо для супесчаных и песчаных почв с малой емкостью поглощения.

Кроме водорастворимых соединений, легко усваиваемыми формами соединений меди являются обменно-сорбированные. Медь поглощается органическими и минеральными коллоидами и глинистыми минералами почв.

Содержание доступной для растений меди в почвах колеблется от 1,1 до 7,8 мг/г.[3]

Роль в растении

Биохимические функции

Формы нахождения и поведения меди в растениях делятся на шесть групп:

  1. Медь присутствует в комплексных соединениях с протеинами и низкомолекулярными органическими веществами.
  2. Медь обнаруживается в составе энзимов – жизненно важных для растений веществ с неисследованными функциями.
  3. Медь играет немаловажную роль в процессах дыхания, фотосинтеза, перераспределения углеводов, фиксации и восстановления азота, метаболизма клеточных стенок и протеинов.
  4. Медь влияет на проницаемость сосудов ксилемы для воды и контролирует баланс влаги.
  5. Медь контролирует образование ДНР и РНК.
  6. Медь оказывает значительное влияние на механизмы устойчивости к различным заболеваниям. Однако при избытке или повышенном содержании меди в растениях они становятся менее устойчивы к некоторым заболеваниям.[3]

По биохимическим свойствам и функциям медь схожа с железом и способна как образовывать стабильные комплексы, так и изменять валентность с двухвалентной на одновалентную. Одновалентная медь нестабильна, в отличие от двухвалентной. Вопрос о том, в какой форме – Cu (II) или Cu (III) – медь поглощается растениями, в настоящее время остается открытым. До 99 % меди в растениях присутствует в виде комплексных форм, а концентрация свободных одно- и двухвалентных ионов предельно низка. Для меди характерно большее сродство к аминокислотам, чем к органическим кислотам, и средняя мобильность во флоэме.

Большинство функций меди в растениях связано с ее непосредственным участием в ферментативных окислительно-восстановительных реакциях. Существует несколько важнейших Cu-ферментов:

  1. Пластоцианин. Участвует в процессе фотосинтеза. Свыше 50 % меди в хлоропластах связано с пластоцианином. На 1000 молекул хлорофилла приходится три-четыре молекулы этого вещества.
  2. Цитохлоромоксидаза – оксидаза митохондриальной ЭТЦ. Включает в себя два атома меди и два атома железа в гемовой конфигурации. Атомы меди взаимодействуют с молекулой кислорода, при условии недостатка меди активность фермента снижается.
  3. Полифенолоксидаза. Отвечает за перенос фенолов на молекулярный кислород. Фермент участвует в биосинтезе лигнина, алкалоидов, меланина. Эти вещества ингибируют прорастание спор и рост грибов. При недостатке меди снижается активность фермента.
  4. Супероксиддисмутаза – изофермент. Играет важную роль в детоксикации супероксидного радикала, образуемого в процессе фотосинтеза. Изофермент присутствует в цитозоле, митохондриях, глиоксисомах, хлоропластах.
  5. Аскорбатоксидаза. Катализирует окисление аскорбиновой кислоты до дегидроаскорбиновой. Содержит до пяти атомов меди на молекулу. Локализуется в клеточных стенках и цитоплазме. При недостатке меди активность фермента снижается. Используется как показатель оценки обеспеченности растений медью.
  6. Диаминоксидаза. Катализирует деградацию путресцина. Локализован в апопласте эпидермиса и ксилемы зрелых тканей. В условиях дефицита меди активность фермента снижается.[2]

Недостаток (дефицит) меди в растениях

Болезнь, вызываемая недостатком меди, называется белокосицей, белой чумой или болезнью обработки.[8] Дефицит меди провоцирует задержку роста, хлороз, потерю тургора и, как следствие, увядание растений, а также задержку цветения и гибель урожая. У злаков при острой нехватке меди белеют кончики листьев и не развивается колос. Плодовые страдают суховершинностью.[10]

Дефицит меди, как правило, возникает у растений на кислых песчаных и торфянистых почвах. Критический уровень недостатка меди наблюдается при содержании меди в вегетативных частях растений 1–5 мг/кг сухой массы. Типичные анатомические нарушения, возникающие вследствие дефицита меди, непосредственно связаны с нарушением лигнификации клеточных стенок. В наибольшей степени это проявляется в склеренхиме клеток стеблей. Это явление может наблюдаться даже при незначительном снижении уровня меди и может быть использовано с целью диагностики.

При недостатке меди отмечается снижение активности медьсодержащих ферментов, участвующих в процессах дыхания и фотосинтеза. Как следствие, в растениях снижается уровень растворимых углеродов. При низком их содержании нарушается формирование пыльцы, что приводит к снижению фертильности, а у бобовых подавляется азотофиксация. Недостаток меди больше влияет на развитие семян, зерен, чем на рост вегетативной массы. Таким образом, для нормального образования и функционирования генеративных органов растениям требуется гораздо больше меди, чем для формирования вегетативных частей растения.

Вызванные недостатком меди нарушения процессов фотосинтеза и дыхания отражаются на энергетическом обмене растения, что провоцирует каскад вторичных физиологических эффектов.[2]

Растения испытывают недостаток меди, а почвы считаются бедными по содержанию данного элемента при содержании меди в почвах Нечерноземья менее 1,5–2,0 мг/кг почвы, а в Черноземье – менее 2,0–5,0 мг.[10]

Избыток меди

При избытке меди наблюдается проявление симптомов отравления растений (фитотоксичность). Это хлороз молодых листьев, при этом, жилки остаются зелеными; хлороз нижних листьев. Последний сопровождается появлением коричневой пятнистости и опадением листьев.[8]

Содержание меди в различных соединениях

Источниками промышленного получения медьсодержащих удобрений являются различные медные руды. По минералогическому составу они делятся на три категории: самородные, окисленные и сульфидные. Основной сопутствующий минерал сплошных сульфидных руд – пирит. Содержание меди в рудах колеблется от 0,7 до 3 %. Медные руды – комплексное сырье. В зависимости от основного спутника меди, подразделяются на медноцинковые, медноникелевые, медномолибденовые и меднокобальтовые. Кроме того, медные руды содержат серу, селен, золото, серебро, платину и многие другие элементы.[5]

Значительное количество меди и ее соединений может быть получено при переработке вторичных цветных металлов.[2]

Содержание меди в удобрениях, согласно данным:[2][6]

Удобрение

Содержание, %

Сернокислая медь (медный купорос)

25 - 35

Суперфосфат с медью

0,4 - 0,8

Пиритные огарки

0,3 - 0,7

Шлаки цинкоэлектролитных и медеплавильных заводов

0,2 – 0,5

Низкопроцентные, окисленные медные руды

0,9

Порошок, содержащий медь

5 - 6

Способы применения медьсодержащих удобрений

Сернокислая медь (медный купорос)

применяется для некорневых подкормок и обработки семян.[2]

Суперфосфат с медью

используют для внесения в почву, для предпосевной обработки семян и некорневой подкормки растений.[6]

Пиритные огарки

применяют для внесения в почву.[6]

Шлаки цинкоэлектролитных и медеплавильных заводов

используют для внесения в почву.[6]

Низкопроцентные, окисленные медные руды

применяют для внесения в почву.[6]

Порошок, содержащий медь

, применяется для опудривания семян.[7]

Медь - Недостаток меди
Недостаток меди


Эффект от применения медьсодержащих удобрений

Эффективность применения медьсодержащих удобрений зависит от вида растения и типа почвы.

Зерновые, лен, кормовые культуры

на осушенных болотных и других почвах. Медные удобрения высокоэффективны, способствуют повышению урожайности и улучшению качества продукции.[1] Опытным путем установлено, что внесение медных удобрений повышает урожай пшеницы на 2–5 ц/га, ячменя – на 2–3 ц/га, овса – на 4–6 ц/га, зеленой массы кукурузы – на 21 %, а початков – на 9–13 %.[6]

Корнеплоды сахарной свеклы

на дерново-подзолистой почве. Внесение медных удобрений приводит к повышению урожайности на 43–45 %. Та же культура при внесении Сu на дерново-карбонатных почвах с достаточным содержанием подвижной меди прибавки в урожае не дает.

Многолетние травы (Латвия)

. После внесения медных удобрений повышается урожайность зеленой массы, улучшается кормовое качество трав.

Картофель

на дерново-подзолистых почвах.Внесение меди при определенных условиях способствует не только увеличению урожайности и улучшению качества корнеплодов, но и повышает сопротивляемость растения к фитофторозу и черной ножке.

Удобрения, содержащие Медь


Показать все удобрения »

Томаты

. Медьсодержащие удобрения увеличивают урожайность и содержание витамина С в плодах.

Морковь

. Увеличивается урожайность, содержание каротина, сахаров, азота.[1]

 

Оставьте свой отзыв:

Отзывы:

Комментарии для сайта Cackle

Составитель:

 

Страница внесена:

Последнее обновление: 05.12.13 01:17

Статья составлена с использованием следующих материалов:

Литературные источники:
1.

Анспок П.И. Микроудобрения: Справочник.– 2-е издание, переработанное и дополненное.– Л.: Агропромиздат. Ленинградское отделение, 1990.– 272 с.

2.

Битюцкий Н.П. Микроэлементы и растение. Учебное пособие. – СПб.: Издательство Санкт-петербургского университета, 1999. – 232 с.

3.

Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях: Перевод с англиского.– М.: Мир, 1989.– 439 с., ил.

4.

Каталымов М.В. Микроэлементы и микроудобрения.– М.: Издательство «Химия», 1965.– 332 с.

5.

Краткая химическая энциклопедия, Главный редактор Н.Л. Кнунянц,  Москва, 1964

6.

Минеев В.Г. Агрохимия: Учебник.– 2-е издание, переработанное и дополненное.– М.: Издательство МГУ, Издательство «КолосС», 2004.– 720 с., [16] л. ил.: ил. – (Классический университетский учебник).

7.

Мязин Н.Г. Система удобрения: учебное пособие. – Воронеж: ФГОУ ВПО ВГАУ, 2009.- 350 с

8.

Петров Б.А., Селиверстов Н.Ф. Минеральное питание растений. Справочное пособие для студентов и огородников. Екатеринбург, 1998. 79 с.

9.

Энциклопедия для детей. Том 17. Химия. / Глав. ред. В.А. Володин. – М.: Аванта +, 2000. – 640 с., ил.

10.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.– М.: Колос, 2002.– 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).

Изображения (переработаны):
11.

Cobar. NSW, by  amandabhslater's, по лицензии CC BY-SA

12.

Withertip caused by copper deficiency in wheat, by  CIMMYT, по лицензии CC BY-NC-SA

Свернуть Список всех источников