Микроудобрения

Микроудобрения — удобрительные вещества, содержащие различные микроэлементы, необходимые растениям для успешного роста и развития.[11] Микроудобрения подразделяются в зависимости от содержащихся в них микроэлементов.


Источники пополнения почвы микроэлементамиорганические удобрения, минеральные удобрения и чистые химические соли. Способы внесения зависят от степени обеспеченности почв микроэлементами.[5]

Виды микроудобрений

Во многих почвенно-климатических зонах при длительном использовании высоких доз минеральных удобрений возникает необходимость в использовании различных микроудобрений. Особенно остро вопрос о применении микроудобрений стоит на осушенных торфянистых почвах, орошаемых землях, на почвах легкого механического состава.

Микроудобрения - Виды микроудобрения
Виды микроудобрения


Микроудобрения различают по содержащимся микроэлементам. Наиболее распространены в российском растениеводстве борные, марганцевые, молибденовые, цинковые и медные удобрения.[10] (Изображение) Расширяется сфера применения хелатных форм микроудобрений.

Борные микроудобрения

Борные микроудобрения – удобрительные вещества, содержащие бор. Этот элемент необходим растениям на протяжении всей жизни. Он не способен реутилизироваться в растениях. Это приводит к тому, что бор особенно необходим молодым, растущим органам. Его недостаток приводит к заболеванию и отмиранию точек роста. Очень важна роль бора на известкованных дерново-подзолистых почвах, поскольку известкование уменьшает доступность бора для растений. Усиливают потребность в боре и калийные удобрения.

Некоторые марки борных микроудобрений:

  • Органо-Бор
  • Борно-кальциевое органо-минеральное удобрение с аминокислотами «Ерема»
  • Борное микроудобрение «Ак бор»
  • Боро-Н
  • Бороплюс
  • Борофоска

Избыток бора вызывает у растений токсикоз, возникает так называемый ожог нижних листьев и проявляется краевой некроз.

В качестве борных удобрений применяют борную кислоту и комплексные борсодержащие удобрения.

Борная кислота

3ВО3) – мелкокристаллический порошок белого цвета. Содержит 17,3 % бора. Хорошо растворима в воде. Применяют для предпосевной обработки семян и некорневых подкормок.[4]

Бура

– натриевая соль борной кислоты. Содержит 11 % бора.

Боросуперфосфат

– простой суперфосфат с содержанием водорастворимого бора 0,2 % и двойной (с содержанием бора 0,4 %).

Бормагниевые удобрения

– источник бора и магния. Содержание бора – не менее 2,3 %.[11]

Ассортимент микроудобрений, зарегистрированных в Российской федерации, представлен в разделе Минеральные удобрения.

Подробнее >>>

Медные микроудобрения

Медные микроудобрения – удобрительные вещества, содержащие медь в форме, легкодоступной для растений. Роль меди в растениях определена ее присутствием в составе медьсодержащих белковых соединений и ферментов. Под влиянием меди ускоряется созревание урожая, снижается вероятность заболевания различными грибковыми заболеваниями: мучнистой росой, пятнистостью листьев, паршой, черной ножкой, фитофторозом.

Растения испытывают недостаток меди на нейтральных и слабощелочных почвах, а также при повышении доз азотных удобрений.

Наиболее эффективны медные удобрения на торфяно-болотных почвах, дерново-подзолистых почвах заболоченных и легкого гранулометрического состава. Больше всего на медь отзываются ячмень, овес, пшеница, лен, корнеплоды, луговой клевер, кормовая и сахарная свекла, плодово-ягодные и многие овощные культуры.[4]

В качестве медных удобрений используются сульфат меди, пиритные огарки, порошок, содержащий медь.[13] Разработана технология получения КАС с содержанием меди 0,5 и 0,05 %.[4]

Микроудобрения - Сульфат меди
Сульфат меди


Сульфат меди

(медный купорос) CuSO4 х 5H2O – 23,4-24,9 % меди. Представляет собой кристаллический порошок серо-голубого цвета, обладающий высокой растворимостью в воде. Медный купорос применяется для предпосевной обработки семян, некорневых подкормок различных сельскохозяйственных культур. Эффективность медных подкормок возрастает в засушливые годы.[4]

Хлористый калий с медью

содержит 0,7 % меди.[4]

Аммофос с медью

содержит 0,9 % меди.[4]

КАС с содержанием меди

0,5 и 0,05 % Cu, используется для основного внесения и подкормки.[4]

Пиритные огарки

– местное медное удобрение, 0,2–0,3 % меди. Вносятся один раз в 4–5 лет осенью под зяблевую вспашку или весной под предпосевную культивацию.[13]

Цинковые микроудобрения

Цинковые микроудобрения – удобрительные вещества, содержащие цинк. Этот элемент водит в состав 30 ферментов, принимает участие в белковом и фосфорном обмене, синтезе аскорбиновой кислоты, ростовых веществ и тиамина, повышает водоудерживающую силу растений.

Недостаток цинка является причиной нарушения углеводного обмена и задержки образования крахмала, сахарозы и хлорофилла. Самым распространенным цинковым микроудобрением является сернокислый цинк (Zn SO4 х 7 Н2О). Отработана технология получения аммофосфата и аммофоса, содержащих 1,5 % Zn.[4]

Сернокислый цинк

(ZnSO4 х 7Н2О) содержит 21–23 % цинка. Применяют для корневой подкормки и обработки семян.[4]

Молибденовые микроудобрения

Молибденовые микроудобрения – удобрительные вещества, содержащие молибден. Этот элемент входит в состав нитратредуктазы и участвует в восстановлении нитратов, а также нитрогеназы, играющей основную роль в фиксации атмосферного азота свободно живущими и клубеньковыми бактериями. Недостаток молибдена тормозит процесс восстановления нитратов в растениях, что приводит к снижению урожая и ухудшению его качества.Известкование кислых почв приводит к мобилизации почвенного молибдена.[4]

Наиболее распространенными молибденовыми микроудобрениями являются молибдат аммония ((NH4)6Мо7О242О), молибдат аммония – натрия, отходы электроламповой промышленности.[5] Разработаны технологии получения аммофоса и аммофосфата с содержанием 1,4 % молибдена.[4]

Молибдат аммония

(NH4)6Мо7О24 2О содержит 50–52 % Мо. Применяется для обработки семян бобовых трав, некорневой подкормки зернобобовых, кормовой и сахарной свеклы.[4]

Молибдат аммония–натрия

содержит 36 % Мо.[5]

Отходы электроламповой промышленности

содержат 12 % Мо.[5]

Аммофос и аммофосфат с молибденом (1,4 % Мо) используются для основного и припосевного удобрения под овощи, зернобобовые, семенники бобовых трав.Нормы этих удобрений устанавливаются по фосфору.[4]

Марганцевые микроудобрения

Марганцевые микроудобрения – удобрительные вещества, содержащие марганец. Необходимость этого элемента обусловлена его активным участием в окислительно-восстановительных реакциях, в фотосинтезе и других жизненно важных для растения процессах.[9] Недостаток марганца, как и его избыток, отрицательно влияет на рост и развитие растений. В качестве марганцевых удобрений применяются сернокислый марганец, марганизированный суперфосфат, марганизированная нитрофоска, марганцевые шламы.

Марганец сернокислый пятиводный – серосодержащее марганцевое удобрение (MnSO4 х 5H2O). Применяется как в основной прием одновременно с основными удобрениями, так и в качестве подкормок.[10]

Марганизированный суперфосфат

– удобрение в виде гранул светло-серого цвета. Содержит 1–2 % марганца. Получают путем добавления при грануляции к порошковидному суперфосфату 10–15 % марганцевого шлама. Применяется так же, как и суперфосфат.[10]

Марганизированная нитрофоска

содержит 0,9 % марганца. Хорошо усваивается растениями. Получают при добавлении в нитрофоску марганцевого шлама. Применяют так же, как обычную нитрофоску.[10]

Марганцевый шлам

содержит от 10–17 % марганца, представляет собой отходы марганцевого производства. Кроме того, содержит 20 % кальция и магния, 25–28 % кремнекислоты, 8–10 % полуторных оксидов и небольшое количество фосфора. Марганцевые шламы эффективно применяются в качестве основного удобрения одновременно с азотно-калийно-фосфорными удобрениями.[10]

Кобальтовые микроудобрения

Кобальтовые микроудобрения – удобрительные вещества, содержащие кобальт. Этот химический элемент активно участвует в процессе фиксации атмосферного азота клубеньками бобовых и небобовых растений.[2] Обогащенность кобальтом растительной продукции для животноводства имеет большое значение, поскольку отсутствие кобальта в кормах менее 0,07 мг на 1 кг сухого сена вызывает акобальтоз, снижение продуктивности и даже гибель животных.

В качестве кобальтовых удобрений используют сернокислый кобальт и хлористый кобальт.[10]

Сернокислый кобальт

CoSO4 . 7(H2O) – розово-красные кристаллы, медленно растворимые в воде.[6] Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян.[10]

Хлористый кобальт

CoCl2 . 6(H2O) – красно-фиолетовые кристаллы, легко растворимые в воде и в этиловом спирте.[7] Применяется для подкормки растений в течение вегетационного периода, а также для предпосевной обработки семян.[10]

Йодсодержащие микроудобрения

Йодсодержащие микроудобрения – удобрительные вещества, содержащие йод. Этот элемент оказывает стимулирующее действие на рост и развитие растений. Йод содержится во многих базовых минеральных и органических удобрениях: фосфоритной муке, суперфосфате, сернокислом аммонии, хлористом калии, навозе, торфе, золе и других. Для вегетационной подкормки и предпосевной обработки семян используется раствор кристаллического йода.[1] В настоящее время разработан ряд удобрений, содержащих йод.[8]

Ванадийсодержащие микроудобрения

Ванадийсодержащие микроудобрения – удобрительные вещества, содержащие ванадий. Важность этого элемента в жизни растений неоспорима. В качестве ванадийсодержащих удобрений применяются метаванадат натрия, ванадат аммония.[1] Кроме того, разработан ряд удобрений, содержащих наряду с другими важными микроэлементами и ванадий.[8]

Метаванадат натрия

(ванадиевой кислоты (HVO3) натриевая соль двухводная) (NaVO3)– однородная субстанция желтого цвета или белый порошок. Применяется в качестве подкормки или для предпосевной обработки семян.[12]

Метаванадат аммония

(NH4VO3) представляет собой неорганическое соединение в виде соли аммиака и метаванадиевой кислоты, имеет вид желтоватых или чисто белых кристаллов, хорошо растворимых в воде.[12] Может применяться в основное внесение и для вегетационной подкормки. Необходимо строго соблюдать указания производителя по применению. (Составитель)

Микроудобрения - Железо(III)-натриевая ЭДТА
Железо(III)-натриевая ЭДТА


Хелатные микроудобрения

Хелатные микроудобрения – удобрительные вещества, изготовленные на основе комплексонатов (хелатов) металлов. Они представляют собой высококонцентрированные водные растворы 1-гидроксиэтилидендифосфонатов и других комплексных солей металлов: Fe3+, Mn2+, Zn2+,Cu2+,Co2+, Mo6+ и В3+. Концентрация комплексонатов в растворе достигает 200 г/л. Содержание микроэлементов – 3–6 % массы. Хелатные удобрения обладают целым рядом преимуществ по сравнению с традиционными микроудобрениями:

  • Не токсичны
  • Устойчивы во всем диапазоне кислотности почв
  • Совместимы со всеми минеральными удобрениями
  • Практически не связываются почвой
  • Не подвержены разрушению микроорганизмами
  • Эффективность воздействия на растения превышает все прочие формы микроудобрений в 2–10 раз

Хелатные микроудобрения (хелат железа, хелат бора, хелат цинка и другие) содержат соответствующий металл в форме комплексного органического соединения (хелата). Применяются как корректоры питания для корневых и внекорневых подкормок в открытом и закрытом грунте.[3] Эффективность удобрения зависит от точности соблюдения инструкции производителя. (Составитель)

Торговые марки микроудобрений

Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации содержит большое количество марок различных микроудобрений:

  • удобрения, содержащие только микроэлементы в различных сочетаниях.
  • микроэлементы в совокупности с гуминовыми веществами,
  • макроудобрения, содержащие один или несколько микроэлементов, и прочее.

Такое многообразие обусловлено не причудами производителей, а разнообразием потребностей почв и растений. Именно эти параметры необходимо учитывать при выборе марки микроудобрений.

Часто уже в названии препарата озвучивается сфера его применения или состав. Так, ОАО “Буйский химический завод” предлагает водорастворимые комплексные минеральные удобрения Акварин Картофельный, Акварин Цветочный, Акварин Земляничный. В ассортименте того же предприятия Солу Микро Fe D 11 (хелат железа ДТПА), Солу Микро Fe 13 (хелат железа ЭДТА), Солу Микро Mn 13 (хелат марганца ЭДТА).

Кроме того, в инструкции к удобрению всегда указываются все основные сведения о нем: состав, основные сферы и время применения, норма расхода, токсичность и прочее.

Одним из главных критериев в выборе удобрения является надежность фирмы – производителя. Пользоваться сомнительными удобрениями сомнительных фирм (читай: подделками) может быть просто опасно. (Составитель)

Применение на различных типах почв

Оптимальные концентрации доступных для растений форм микроэлементов в почве труднодостижимы, поскольку многие из них либо достаточно легко вымываются из почвы, либо закрепляются в ней и становятся недоступны растениям. Создание оптимальных уровней содержания микроэлементов в почвах проводится только в случае крайней генетической бедности их тем или иным микроэлементом. При этом следует соблюдать осторожность, поскольку избыточное содержание микроэлемента может оказывать негативное воздействие на качество и урожай сельхозкультур.

Почвы подразделяют на четыре группы по степени обеспеченности микроэлементами:

I группа – низкая обеспеченность микроэлементами.

II группа – среднеобеспеченные почвы

III группа – высокообеспеченные микроэлементами почвы

IV группа – почвы с избыточным содержанием микроэлементов.

Вносить микроэлементы в почву рекомендуется только на почвах I группы. На среднеобеспеченных почвах микроэлементы вносятся путем предпосевной обработки семян и некорневых подкормок. В III и IV группах почв внесение микроэлементов в любом виде категорически исключается.[4] Для каждого зонально-климатического типа почв определяются конкретные величины градации обеспеченности почвы теми или иными микроэлементами. (Составитель)

Способы внесения

Агрохимическая эффективность способов применения микроэлементов выглядит следующим образом:

  • Внесение одновременно с макроудобрениями – самый эффективный способ применения.
  • Предпосевная обработка семян занимает второе место.
  • Предпосевная подкормка располагается на третьем месте по эффективности.

Однако по причине дефицита микроудобрений, их дороговизны, опасности передозировки и загрязнения окружающей среды основными способами внесения микроудобрений остается внесение их в составы при предпосевной подготовке семян или некорневых подкормках.

Микроудобрения применяются при возделывании культур по интенсивным технологиям.[4]

 

Оставьте свой отзыв:

Составитель:

 

Страница внесена:

Последнее обновление: 10.05.14 13:51

Статья составлена с использованием следующих материалов:

Литературные источники:
1.

Анспок П.И. Микроудобрения: Справочник.– 2-е издание, переработанное и дополненное.– Л.: Агропромиздат. Ленинградское отделение, 1990.– 272 с.

2.

Битюцкий Н.П. Микроэлементы и растение. Учебное пособие. – СПб.: Издательство Санкт-петербургского университета, 1999. – 232 с.

3.

Булыгин С.Ю. и др Микроэлементы в сельском хозяйстве. Издание третье переработанное и дополненное. Днепропетровск, 2007 – 100 с.

4.

Вильдфлуш И. Р., Цыганов А. Р., Лапа В. В., Персикова Т. Ф. Рациональное применение удобрений: Пособие. – Горки: Белорусская государственная сельскохозяйственная  академия, 2002.– 324 с.

5.

Вильдфлуш И.Р., Кукреш С.П., Ионас В.А. Агрохимия: Учебник – 2-е изд., доп. И перераб. – Мн.: Ураджай, 2001 – 488 с., ил.

6.

ГОСТ 4462–78 Реактивы. Кобальт (II) сернокислый 7-водный. Технические условия. Издательство стандартов, Москва, 1993 – 14с

7.

ГОСТ 4525-77 Реактивы. Кобальт хлористый 6-водный. Технические условия. Издание официальное. ИПК Издательство стандартов, Москва, 1996 – 16с

8.

Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации, 2013 год. Министерство сельского хозяйства Российской Федерации (Минсельхоз России)

9.

Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях: Перевод с англиского.– М.: Мир, 1989.– 439 с., ил.

10.

Минеев В.Г. Агрохимия: Учебник.– 2-е издание, переработанное и дополненное.– М.: Издательство МГУ, Издательство «КолосС», 2004.– 720 с., [16] л. ил.: ил. – (Классический университетский учебник).

11.

Муравин Э.А. Агрохимия. – М. КолосС, 2003.– 384 с.: ил. – (Учебники и учебные пособия для студентов средних учебных заведений).

12.

Химическая энциклопедия:  в пяти томах: т.1: А-Дарзана/Редкол.: Кнунянц И.Л. (гл. ред.) и др. – М.: Советская энциклопедия, 1988. – 623.: ил

13.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.– М.: Колос, 2002.– 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).