Азотфиксирующие бактерии

Азотфиксирующие бактерии – это бактерии,обладающие способностью к биологической азотфиксации, то есть связыванию азота атмосферы и переводу его в азотосодержащие соединения[4][2].

Зеленые растения не способны питаться азотом, поглощая его в чистом виде из атмосферного воздуха или почвы. Денитрифицирующие бактерии выделяют азот из органических соединений и переводят его в чистый азот атмосферы. Тем самым они делают его недоступным для растений. В противовес им азотфиксирующие микроорганизмы, в основном бактерии, связывают атмосферный воздух в органических соединениях и делают его доступным для растений. Таким образом, поддерживается баланс азота в природе[4].

К азотфиксирующим бактериям относятся: клубеньковые бактерии, некоторые актиномицеты, цианобактерии. Азотофиксаторы установлены во многих родах бактерий: Bradyrhizobium, Pseudomonas. Имеются данные о способности бактерий одних и тех же видов, в зависимости от условий развития, осуществлять два диаметрально противоположных процесса – азотфиксацию и денитрификацию[3].

История открытия

Проблема азотного питания растений возникла с развитием земледелия. Практически было установлено, что возделывание бобовых растений повышает плодородие почвы. Эта информация содержится в трудах греческого философа III–I вв. до н. э. Теофраста.

Механизм и причины этого были научно обоснованы учеными в XIXв:

  • Жан Баптист Буссенго – французский агрохимик, в 1838 – 38 гг. путем научных исследований подтвердил способность бобовых растений обогащать почву азотом.
  • Э. Лахман (1858) и М.Воронин (1866) – впервые обнаружили на корнях бобовых растений клубеньки, наполненные бактериями палочковидной формы.
  • А. Франк (1879) показал, что клубеньки возникают в результате попадания инфекции из почвы.
  • Г. Гельригель (1831-1895) и Г. Вильфарт (1884-1886) – окончательно установили связь между образованием клубеньков и связыванием молекулярного азота.
  • С.Н. Виноградский – русский микробиолог, в 1894 году установил наличие в природе свободноживущих, бактерий фиксирующих азот. Из почвы с помощью питательного раствора, содержащего сахар, он выделил бактерии Clostridium pasterianum и обнаружил их способность фиксировать азот (N2). Но, не приняв во внимание образование поверхностной пленки, он пропустил факт существования бактерий Azotobacter chroococcum. Последние, в 1902 году, были открыты голанским микробиологом Бейриком[1].

В дальнейшем, с совершенствованием исследовательских методов микробиологии, список азотофиксаторов пополнился новыми видами[1].

Клубеньковые бактерии

Клубеньковые бактерии – одна из самых изученных групп азотофиксирующих бактерий. В настоящее время их относят к роду Rhizobium, а видовые названия обычно соответствуют названию того растения, из клубеньков на корнях которого, выделены бактерии. В частности, Rhizobium trifolii – растение-хозяин клевер, Rhizobium phaseoli – растение-хозяин фасоль, Rhizobium leguminosarum – растение-хозяин горох. Это объясняется видоспецифичностью клубеньковых бактерий[3].

Существование клубеньковых бактерий является примером мутуалистических (взаимовыгодных) симбиотических взаимоотношений, относящихся к типу эндосимбиозов, при котором клетки микроорганизмов находятся в клетках и тканях макроорганизма[3].

Клубеньковые бактерии – грамотрицательные подвижные палочки в свободном состоянии и в молодых клубеньках. При дальнейшем развитии они приобретают неправильную форму и превращаются в разветвленные, булавовидные или сферические бактероиды. На этой стадии происходит фиксация молекулярного азота[3].

Клубеньковые бактерии являются микроаэрофильными микроорганизмами, способными развиваться при низком парционном давлении кислорода в среде. Они хемотрофы, гетеротрофы (хемогетеротрофы), часто нуждаются в факторах роста (витаминах): тиамине, пантотеновой кислоте, биотине. Оптимальная температура роста – +24°C–+26 °C[3].

Обычно клубеньковые бактерии существуют в почве свободно, их количеств зависит от типа и характера почвы, предшествующей сельскохозяйственной обработки. Характерно, что в свободном состоянии, то есть, находясь в почве, данная группа бактерий не способна фиксировать азот из атмосферы, а использует связанный азот[3].

Симбиотическая связь растения и клубеньковых бактерий устанавливается в фазе прорастания семян. При их развитии корни выделяют органические питательные вещества, стимулирующие размножение ризосферных микроорганизмов, в том числе клубеньковых бактерий. Их почвы клубеньковые бактерии проникают в корень через корневые волоски[3].

В корневой волосок проникает сразу несколько бактерий. Процесс проникновения сопровождается инвагинацией мембраны корневого волоска. Это приводит к образованию трубки (инфекционной нити), выстланной целлюлозой, вырабатываемой клетками растения-хозяина. В ней располагаются интенсивно размножающиеся бактерии. Инфекционная нить проникает в кору корня, проходит через ее клетки. Клубенек развивается при достижении инфекционной нитью тетраплоидной клетки ткани коры. Одновременно наблюдается полиферация тетраплоидной клетки и соседних диплоидных клеток коры. Индуцирует пролиферацию индолилуксусная кислота – растительный гормон, синтезируемый клубеньковыми бактериями.В конце периода роста растения-хозяина часто наблюдается полное исчезновение бактерий из клубеньков в связи с их отмиранием. Вещества отмерших клеток поглощает растение-хозяин[3].

Для обогощения почвы клубеньковыми бактериями в промышленных масштабах производятся специализированные препараты, содержащие клубеньковые бактерии,

Они используются для предпосевной обработки семян бобовых[3].

Многообразие азотфиксирующих бактерий

Кроме клубеньковых бактерий способностью к азотофиксации обладают многие другие микроорганизмы:

  1. Бактерий рода Bradyrhizobium – вступают в эндосибиотические мутуалистические взаимоотношения с бобовыми растениями тропического и иногда умеренного пояса. Все штаммы бактерий данного рода обнаруживают сроство к определенному кругу хозяев. В частности, вторая по экономической значимости сельскохозяйственная культура в США соя – формирует симбиоз с бактериями вида Bradyrhizobium japonicum. Так же как и клубеньковые бактерии, Bradyrhizobium образуют клубеньки, в которых клетки бактерий имеют неправильную раздутую форму (бактероиды) и продуцируют нитрогеназу – фермент, способствующий фиксации азота[3].
  2. Актномицеты рода Frankia. Хозяевами актиномицетов-симбиотов выступают более 200 видов двухдольных древесных растений, принадлежащих к восьми семействам, в числе которых ольха, облепиха, стланик, казуарина. На корнях растений в результате симбиоза с актиномицетами образуются клубеньки, достигающие в диаметре 5 см. Актиномицеты проникают в корни через корневые волоски и образуют клубеньки. В них также как и у бобовых образуется леггемоглобин, защищающий нитрогеназу от избытка молекулярного кислорода. Химизм фиксации азота актиномицетами аналогичен подобному процессу у клубеньковых бактерий, но более экономичен с точки зрения расхода АТФ. Кроме того, актиномицеты рода Frankia способны к азотфиксации в свободноживущем состоянии, без контакта с растением[3].
  3. Бактерий родов Chromatium и Klebsiella вступают в эндосимбиоз с тропическими растениями Peretta и Psichoteria, образуя на их листьях клубеньки в которых осуществляется фиксация азота[3].
  4. Цианобактерии – это многоклеточные организмы, отдельные клетки которых, в условиях отсутствия связанного азота, преобразуются в специализированные формы – гетероцисты. В них происходит фиксация атмосферного азота. В гетероцистах нитрогеназа защищена от ингибирующего действия молекулярного кислорода дополнительными поверхностными оболочками. Цианобактерии способны образовывать симбиозы с широким кругом растений, включая покрытосеменные, голосеменные, папоротники, мхи и даже одноклеточные морские диатомовые водоросли. Наиболее изучен эндосимбиоз цианобактерий Anabaena azollae с водным папоротником Azolla, у которого цианобактерии содержаться в полостях листьев, растущих на поверхности стоячих вод[3].

Бактерии рода Pseudomonas, обитающие в ризосфере различных растений, способны фиксировать молекулярный азот. Азотфиксирующие свойства выявлены у штаммов P. saccharophila, P. dеlafieldii, P. aurantiaca и др.

 

Оставьте свой отзыв:

Отзывы:

Комментарии для сайта Cackle

Составитель:

 

Страница внесена:

Последнее обновление: 28.07.20 14:14

Статья составлена с использованием следующих материалов:

Литературные источники:
1.

Батраков В.В., (рецензент), составители: Васильев Д.А. , Феоктистова Н.А., Золотохин С.Н. История микробиологии: Курс лекций. – Ульяновск, 2007. – 74с.

2.

Госманов Р.Г., Галиуллин А.К., Волков А.Х., Ибрагимова А.И. Микробиология: Учебное пособие. — 2-е изд., стер. - СПб.: Издательство «Лань», 2017. — 496 с.

3.

Лысак В.В. Микробиология : учеб. пособие / В. В. Лысак. – Минск: БГУ, 2007 – 430 с

4.

Химическая энциклопедия:  в пяти томах: т.1: А-Дарзана/Редкол.: Кнунянц И.Л. (гл. ред.) и др. – М.: Советская энциклопедия, 1988. – 623.: ил

Свернуть Список всех источников